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A CAD-Suitable Approach for the Analysis of Nonuniform
MMIC and MHMIC Transmission Lines

Ali H. Hamade, Ammar B. Kouki, and Fadhel M. Ghannouchi

Abstract— A new method of moment-based formulation for the so-
Iution of the telegraphist’s equations in nonuniform transmission lines
is presented. Entire domain basis functions that build in a frequency
variation are used to cover wider frequency and physical dimension
ranges. The results obtained using the proposed formulation are validated
by comparison to those obtained by a CAD package and to measured
data. Different nonuniform lines in microstrip and coplanar technologies
on monolithic microwave/millimeter wave integrated circuit (MMIC) and
miniaturized hybrid microwave integrated circuit (MHMIC) substrates
are investigated with an application to the design a matched taper
transition in a MMIC coplanar line.

I. INTRODUCTION

Over the past several years considerable work has been carried out
in the area of microstrip discontinuity modeling. More recently, CAD-
suitable discontinuity models for coplanar transmission lines have
been derived [1]. As a result, a fair amount of CAD-oriented models
of various discontinuities is now available. However, by contrast,
little work has been done in the area of nonuniform transmission
lines modeling except for costly fully three-dimensional (3-D) field
simulators, the numerical approach described in [2] and [3], or the
analytical solution for single-line exponential tapers (see for example
[41). Consequently. CAD models for nonuniform transmission lines
are very limited and even the few that exist, such as for example
the linearly tapered microstrip line, have limitations, i.e., the ratio of
the taper’s length to the difference in width must be smaller than 0.6
[51. In the case nonuniform coplanar transitions, no CAD models are
available at all. In many cases. one is therefore left with a tedious
and time-consuming cascading approach as the only option.

In this paper. a new formulation of the nonuniform transmission
line problem is presented. The proposed approach is applicable to
any guiding structure whose fundamental mode can be treated as a
quasi-TEM mode. In particular, a number of nonuniform microstrip
and coplanar waveguide transitions will be analyzed to illustrate the
method. The accuracy of the proposed techmique is validated by
comparison with the results of a CAD package, using built-in models
where applicable and cascading otherwise, and with measured data.

II. FORMULATION

A schematic representation of a nonuniform section of a quasi-
TEM supporting transmission line is shown in Fig. 1. For the
fundamental mode, the propagation in such a structure can be
described 1n terms of the telegraphers’ equations with frequency and
position dependent line parameters, namely

QT2 — Y (f )V (2
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Fig. 1. Schematic representation of the geometry of a nonuniform line.

where f is the frequency and Z and Y are the per-unit length
impedance and admittance of the line, respectively. These parameters
are assumed to be known from the line geometry at a given z-
position and from the frequency. For microstrip lines, the accurate
closed form expressions in [6], including dispersion effects, are used
while for coplanar lines the expressions in [7] and [8] are employed.
For other guiding structures, where no closed form expressions are
available, these parameters can be computed by one of a number of
different numerical techniques with varying degrees of accuracy and
computational cost. It is important to note that these parameters are
in general complex of the form

Z(z) = R(z)+ jwLl(z) and Y (z)=G(2)+ jwC(z). (2

This allows us to include losses due to finite conductor conductivity
and thickness through the resistance term, as well as those due
to dielectrics through the conductance term. The per-unit length
parameters RLCG can be computed from the basic transmission
line’s constants [6] (characteristic impedance: Zo, phase constant: 3,
attenuation constant due to conductor loss: a., attenuation constant
due to dielectric loss: «q) at a given z position as follows:

(o8 R-mee N
_ _ B _ (aetay) :
C= Zoonf G= Zo 4

Next, we proceed to formulate a method of moment solution of the
coupled equations in (1). The key to such a solution is the accurate
representation of the unknown current and voltage along the line.
First, we note that a conventional subdomain basis functions (partially
overlapping) expansion approach would not work here. This is due
to the discontinuity that would result in either the current or voltage
as a consequence of the derivative with respect to =~ and the coupling
of (1). Therefore, an entire-domain basis functions formulation is
needed. In the present approach, we propose to use frequency-
varying basis functions by expanding the currents and voltages in
terms of forward and backward propagating waves with different
wavenumbers such that

I(z) = Zfil a.e” T 4+ b = Z;l a, F,(z)+b,B,(z)
1(2) = EZI\LI c,e  NME pde = 11\;1 . F ()4 d,B.(2)
4
where {a,.b,,c,.d,} are unknown coefficients and where the
frequency-dependence is built in the propagation constants 5, =
a, 47 ,. Note that the expansion in (4) is not a spectral representation
since the set of propagation constants {~. } is not related to the spatial
coordinate z and the line length L, but rather to the line’s cross-
sectional dimensions at a set of points {z,} along the line and to
frequency. Note also that, in the limiting case of a unirorm line. only
one set of basis functions, namely F; and B, will suffice to solve
the problem exactly for all frequencies.
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Substituting (4) into (1) and testing with F,, and B,,, we obtain
a matrix equation whose entries are given in terms of the following
inner products:

(P F) (R, Bu)(B.. Fu)(B., By) )
(Z(2)Fi, Fo){Z(2)Fi, Ba)(Z(2) Bi, Fn){Z(2)Bi, Bn)  (5b)
Y () F:, F.)YY (2)F;, Bu){(Y(2)Bi, Fr)(Y(2)B;, By,) (5¢)
where the inner product definition used is
L
(o) = [ @i ©®
o

The terms of (5a) are easily evaluated in closed form. However,
to evaluate the terms of (5b) and (Sc) which involve the position-
varying line parameters, a slightly different procedure is followed.
First, the total line length is subdivided in to M equal segments (see
Fig. 1). Then, the per-unit length parameters Y (f, z) and Z(f, z) are
represented by a piece-wise linear function such that, at the given
frequency f and over the mth segment we have

{Y(z) =Aymz+ Bym

Z(z) = Asz + Bzm for Zm S z S Zm41 (7)

where Ay, Azm,Bym and B.,. are computed from Y (zm),
Y (zm+1), Z(2m) and Z(2Zm41). The integrals of (5b) and (5¢)
can then be written as sums of the general form

M ——
X = 3 Aum / 2 f(2)g(z)dz

4 Bun [ 200z ®)

where f(z) and g(z) represent combinations of the functions F; and
B;. Consequently, closed form expressions for these integrals are
easily obtained in terms of the known A . and B.,. coefficients at
each frequency. : .

It should be noted that the integrals in (5) involving F; . and
B,.,; have denominators of the form (-;,» — yn ). For the case of
Y = 7n, which arises when { = n or when the same geometric
parameters of the line are repeated at different positions, we can
show that these integrals have a finite values which can be used in
the numerical computations. However, due to the finite precision of
computers’ arithmetic, care must be taken for the cases when ¢ # n
and v; & v, to avoid overflow errors. This can accomplished by
choosing a distinct set of +; through a linear interpolation between
the minimum and maximum values of 7 associated with the structure
being considered; or by proper choice of a tolerance criterion on
|vi — | for which the integrals are replaced by their corresponding
finite values.

With the method of moments matrix thus filled, boundary condi-
tions are applied to complete the system of equations and compute
the scattering parameters of the nonuniform line. This is done by
considering the terminal conditions shown in Fig. 1 and which give

{V(O) = V01 - Z()]_I(O) (9)
V(L) = V02 + ZozI(L) .

where Zo1 = Zo2 = 50 (1. To obtain the scattering parameters of
the line, we solve the problem twice: once with
Voi1=1
Vpo=0
and a second time with

Vo1=0
Voz=1"
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Fig. 2. Scattering parameters of an end-to-end taper as a function of con-
ductor thickness. wl = 0.75 mm, Aw = 3.5 mm, I, = 5 mm, &, == 10,
h = 0.254 mm, tan § = 0.0001, conductor ¢ = 5.8 x 107 S/m.

Using these results, and the S-parameters definition

2Vi; — Vo

Voi
where V;; is the voltage at port ¢ when port j is excited and Vp; is

the excitation voltage at port 7 (Vo; = 0 for ¢ # j), we obtain the
four S-parameters of the line.

Sij =

III. RESULTS

The above approach has been implemented and tested on a number
of structures using only a moderate number of basis functions
(between 3 and 5) with good results. A wide range of linear

—L
w(z) = w1‘+ 28w(l - |—Z~L—/2/—gl)
microstrip tapers and sinusoidally-modulated periodic microstrip
structures

w(z) = wo(l — mcos(%Tz))

were investigated and compared to MDS models [5] and to measured
results with good agreement [9]. Here, the effects of the conductor’s
thickness and finite conductivity, as well as those of dielectric loss,
on the unit-cell of Fig. 2 in reference [9] are studied and the results
for different strip thicknesses are shown in Fig. 2.

In addition to the microstrip transitions, tapers in ground-backed
coplanar waveguide (CPWG) on a MMIC substrate and coplanar
waveguide without a lower ground plane (CPW) on a MHMIC
substrate were analyzed. Since no CAD model exists for these
transitions, cascaded sections were used in MDS to simulate the
tapers. The S-parameters of both tapers resulting from the present
approach and the MDS simulations are shown in Figs. 3 and 4 for
CPWG and CPW, respectively. It is seen that as the number of
cascaded sections increases, the MDS results converge toward the
results of the present approach. In order to validate these results with
measurement data, special unit cells made of end-to-end tapers are
needed to accommodate the fixed pitch of the probes available to us.
One such cell was fabricated on the MHMIC substrate and measured
with a probe station and the HP8510 Network Analyzer. The results
of the measurements are presented in Fig. 5. Excellent agreement
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Fig. 3. Scattering parameters of a linear CPWG taper on a MMIC substrate.

wl = 0.2 mm, g1 = 0.6 mm, w2 = 0.8 mm, g2 = 0.1 mm, I, = 2 mm,
h = 0.635 mm, & = 12.9, 21 = 6543 Q,22 = 2748 Q.
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Fig. 4. Scattering parameters of a linear CPW taper on a MHMIC substrate.
wl = 0.1 mm, g1 = 0.6 mm, w2 = 0.8 mm, ¢2 = 0.1 mm, L = 2.5 mm,
h =0.254 mm, &» = 10.0,Z1 = 118.08 2, Z2 = 40.27 Q.

between simulation and measurements is seen which demonstrates
the accuracy and validity of the proposed approach.

Finally, an interesting application of the present approach is in the
design and analysis of matched transitions. Unlike the microstrip line,
where substrate height must be varied if one is to obtain a matched
taper transition [10], a combination of central conductor width and
gap spacing variations make a matched taper transition much easier to
accomplish in coplanar technology. For example, a 50 {2 impedance
can be obtained with (w = 0.138 mm, ¢ = 0.1 mm) or (w =
0.414 mm, g = 0.6 mm). Intuitively, a matched transition would be
obtained with a linear taper in both w and g. However, given that the
relationship between the impedance and w and g is not quite linear, a
more precisely matched transition can be obtained with a linear taper
in g and a quadratic taper in w. For the transition considered here,
and for which the results are shown in Fig. 6, the quadratic transition
is given by the equation: w(z) = 0.14 + 0.2382 — 52.452%, where
w and z are in mm. This profile was obtained as follows: at each
position along z, ¢(z) is computed by linear interpolation between
9(0) and g(L). With g(z) known and fixed, w(z) is obtained by
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Fig. 5. Computed and measured scattering parameters of an end-to-end CPW
taper. wl = 0.1 mm, g1 = 0.6 mm, w2 = 0.8 mm, g2 = 0.1 mm, L = 10
mm, i = 0.254 mm, &, = 10.0.
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Fig. 6. Scattering parameters of matched taper transition in CPWG.
wl = 0.138 mm, g1 = 0.1 mm, w2 = 0.414 mm, g2 = 0.6 mm,
L =2mm, h =0.635 mm, &, = 12.9,Z1 = Z2 = 50 Q.

synthesizing a 50 €2 line. A curve fitting of the resulting set of points
is then performed to determine the profile for w(z). It was found that
a quadratic polynomial yielded good fit of the profile of w(z).

IV. CONCLUSION

A new formulation using a method of moments approach with
frequency-varying basis functions for the simulation of nonuniform
transmission lines has been presented. The accuracy of the proposed
technique was tested by comparison to existing empirical models
and to measured data. The effects of finite conductor thickness and
conductivity have also been included and tested. Furthermore, the
application of this technique to transitions in coplanar waveguides
was demonstrated through the analysis of linear tapers, matched
quadratic tapers, as well as the analysis and measurement of cells
made of end-to-end tapers. The fact that the basis functions used
in the proposed approach build in the frequency dependence of the
current and voltage makes it possible to solve complicated structures
with only a small number of basis functions making the method
quite efficient. The speed and efficiency of the algorithm used for
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the numerical implementation of the method make it particularly
attractive and practical for CAD applications to simulate transitions in
a wide range of transmission lines. The main limitation of the present
approach is the relatively smooth variation of the transmission line
parameters (RLCG) required (i.e., sharp discontinuity effects cannot
be modeled at this stage). Finally, with such an efficient technique,
circuit synthesis problems using nonuniform lines for a variety of
applications are currently undertaken.
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